Fuzzy Decision Trees

نویسنده

  • Malcolm J. Beynon
چکیده

The inductive learning methodology known as decision trees, concerns the ability to classify objects based on their attributes values, using a tree like structure from which decision rules can be accrued. In this article, a description of decision trees is given, with the main emphasis on their operation in a fuzzy environment. A first reference to decision trees is made in Hunt et al. (1966), who proposed the Concept learning system to construct a decision tree that attempts to minimize the score of classifying chess endgames. The example problem concerning chess offers early evidence supporting the view that decision trees are closely associated with artificial intelligence (AI). It is over ten years later that Quinlan (1979) developed the early work on decision trees, to introduced the Interactive Dichotomizer 3 (ID3). The important feature with their development was the use of an entropy measure to aid the decision tree construction process (using again the chess game as the considered problem). It is ID3, and techniques like it, that defines the hierarchical structure commonly associated with decision trees, see for example the recent theoretical and application studies of Pal and Chakraborty (2001), Bhatt and Gopal (2005) and Armand et al. (2007). Moreover, starting from an identified root node, paths are constructed down to leaf nodes, where the attributes associated with the intermediate nodes are identified through the use of an entropy measure to preferentially gauge the classification certainty down that path. Each path down to a leaf node forms an ‘if .. then ..’ decision rule used to classify the objects. The introduction of fuzzy set theory in Zadeh (1965), offered a general methodology that allows notions of vagueness and imprecision to be considered. Moreover, Zadeh’s work allowed the possibility for previously defined techniques to be considered with a fuzzy environment. It was over ten years later that the area of decision trees benefited from this fuzzy environment opportunity (see Chang and Pavlidis, 1977). Since then there has been a steady stream of research studies that have developed or applied fuzzy decision trees (FDTs) (see recently for example Li et al., 2006 and Wang et al., 2007). The expectations that come with the utilisation of FDTs are succinctly stated by Li et al. (2006, p. 655);

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

A Novel Approach on Designing Augmented Fuzzy Cognitive Maps Using Fuzzified Decision Trees

This paper proposes a new methodology for designing Fuzzy Cognitive Maps using crisp decision trees that have been fuzzified. Fuzzy cognitive map is a knowledge-based technique that works as an artificial cognitive network inheriting the main aspects of cognitive maps and artificial neural networks. Decision trees, in the other hand, are well known intelligent techniques that extract rules from...

متن کامل

Fuzzy-Rough Feature Significance for Fuzzy Decision Trees

Crisp decision trees are one of the most popular classification algorithms in current use within data mining and machine learning. However, although they possess many desirable features, they lack the ability to model vagueness. As a result of this, the induction of fuzzy decision trees (FDTs) has become an area of much interest. One important aspect of tree induction is the choice of feature a...

متن کامل

FuzzyDT- A Fuzzy Decision Tree Algorithm Based on C4.5

Decision trees have been successfully applied to many areas for tasks such as classi cation, regression, and feature subset selection. Decision trees are popular models in machine learning due to the fact that they produce graphical models, as well as text rules, that end users can easily understand. Moreover, their induction process is usually fast, requiring low computational resources. Fuzzy...

متن کامل

Optimized Fuzzy Decision Tree for Structured Continuous-Label Classification

Mainly understandable decision trees have been intended for perfect symbolic data. Conventional crisp decision trees (DT) are extensively used for classification purpose. However, there are still many issues particularly when we used the numerical (continuous valued) attributes. Structured continuouslabel classification is one type of classification in which the label is continuous in the data....

متن کامل

Review of Fuzzy Decision Tree: An improved Decision Making Classifier

Over the years, various methodologies have been investigated and proposed to deal with continuous or numeric data which is very common in any application. With the increasing popularity of fuzzy representation, researchers have proposed to utilize fuzzy logic in decision trees to deal with the situations. This paper presents a survey of current methodology to design FDT (Fuzzy Decision Tree), v...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009